skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grasso, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Landscape disturbance events (e.g., earthquakes, slope failures) play key roles in landscape evolution in tectonically active areas. Along the Teton fault, fault scarps vary in height by up to tens of meters. LiDAR-based mapping indicates that scarp height is affected by glacial geomorphology, slope failure, and alluvial processes. LiDAR data, digital and field mapping were used to characterize fault scarps and slope failure deposits along the Teton fault zone. Based on vertical separation (VS; the vertical offset between faulted surfaces) across fault scarps and the expected behavior of normal faults, we propose a four-section model of the Teton fault. At a broad scale, VS is greatest along the southern fault zone. At a finer scale, VS is least at the ends of the fault and at three areas within the central fault zone. Transitions between these four sections may represent segment boundaries with potentially important implications for geohazards assessment. 
    more » « less